Deep learning theory
for power-efficient algorithms

Sébastien Loustau
jw.w. A. Chee (Cornell, Ithaca), and P. Gay (team member)

November, 29th, 2021
Team ApproxBayes, RIKEN AIP

AlP
e RIMEN

Deep learning theory
for power-efficient algorithms

Sébastien Loustau
jow.w. A. Chee (Cornell, Ithaca), and P. Gay (team member)

QOutlines

@ Gentle start with gradient and mirror descent

@ First application: how to learn sparse deep nets

© Extension to the power metrical task problem

QOutlines

@ Gentle start with gradient and mirror descent

Convexity and gradient

Let f: K C RP — R a convex function on a convex body.

Convexity and gradient

Let f: K C RP — R a convex function on a convex body.
If f is differentiable, Vx,y € K,

fly) = f(x) + VF(x) - (y —x).

Convexity and gradient

Let f: K C RP — R a convex function on a convex body.
If f is differentiable, Vx,y € K,

fFly) 2 £(x) + VE(x) - (y —x).
For y = argmink f(x), we have :

—Vf(x)-(y —x)>0.

Convexity and gradient

Let f: K C RP — R a convex function on a convex body.
If f is differentiable, Vx,y € K,

fFly) 2 £(x) + VE(x) - (y —x).
For y = argmink f(x), we have :

—Vf(x)-(y —x)>0.

The gradient flow %xt = —Vf(xt) is suitable for convex opt

Gradient descent

Theorem
Under the previous assumption, the discretized version

Xer1 =Xt —NVIf(x), t=1,..., T,

satisfies:

P30 - 0 < 2B S i

Gradient descent

Theorem
Under the previous assumption, the discretized version

Xer1 =Xt —NVIf(x), t=1,..., T,

satisfies:

I3 -) < Z V(e

Proof.
The drop at time t satisfies:

2
I

Ixer1 — ¥II2 = [Ixe — yII> = —2n(xc — y)VF(xe) + 0? |V (xe)]]%.

O

Extension to non-euclidean settings

Gradient descent (1) can be written as:

2
X — X
Xet1 = arg;nei’r(l {Wf(xt) X+ ”2f”} .

Extension to non-euclidean settings

Gradient descent (1) can be written as:
2
: X — X
s =g {9y 4 2

= no localization and pure Euclidean setting

Mirror descent

Mirror descent solves:

Xei1 1= arg)r(neilQ {nVFf(xt) - x + Bo(x, x¢)} (2)

Mirror descent

Mirror descent solves:

Xei1 1= arg)r(neilQ {nVFf(xt) - x + Bo(x, x¢)} (2)

¢ Right dual form V&(xe11) = VO(x¢) — nVF(xe),

Mirror descent

Mirror descent solves:

Xei1 1= arg)r(neilQ {nVFf(xt) - x + Bo(x, x¢)} (2)

¢ Right dual form V&(xe11) = VO(x¢) — nVF(xe),
o For d(x) = L (2) & (1),

Mirror descent

Mirror descent solves:

Xep1 (= arg rréllrg {nVF(xe) - x + Bo(x,xt)},

¢ Right dual form V&(xe11) = VO(x¢) — nVF(xe),
o For d(x) = L (2) & (1),

® Bo(x,xt) = ||x — XtH2V2¢(wt) by Taylor approximation,

Mirror descent

Mirror descent solves:

Xei1 1= arg)r(réilrg {nVFf(xt) - x + Bo(x, x¢)} (2)

Right dual form V®(xe11) = VO(x¢) — nVF(xe),
For o(x) = 5, (2) & (1),
Bo(x,xt) = [|x — XtH2V2¢(wt) by Taylor approximation,

Next: (2) with ®(p) = [plogp, then Bo(p,) = K(p, 7) and
we get for instance Bayesian updating.

QOutlines

@ First application: how to learn sparse deep nets

Online learning
PAC Bayesian framework

Considering a deterministic set {z;,t =1,..., T}, a set of experts
G and a loss function, we want to build a sequence of
distributions (p;)/_; on G satisfying:

-
ZEngf g 2t) _g”éf {ZE g,zt) + pen(g)}+AT7

t=1 t=1

where
® pen(g) measures the complexity of the network,

® At > 0 is at least sublinear.

Supervised framework for CNNs

Framework

® z=(x,y), x € X input space of images, time series, network,
¢ the cross-entropy loss function 4(¥, y),

® G:={gw: X —)Y,wec W}, where w are the weights of a
given CNNs architecture or set of architectures,

Supervised framework for CNNs

Framework

® z=(x,y), x € X input space of images, time series, network,
¢ the cross-entropy loss function 4(¥, y),

® G:={gw: X —)Y,wec W}, where w are the weights of a
given CNNs architecture or set of architectures,

o G:={gw: X —)Y, we W}is a set of XNOR-nets
architecture. For XNOR-nets convolutions are approximated
by bitwise operations:

Xk = (wfin @ sign o BNorm (Xk—l)) @ wicale,

Sparsity regret bound

Standard case

Theorem

Considering inputs {(x¢, yt),t = 1,..., T}, the decision space G,
and cross-entropy loss, there exists a sequence of distributions
(pt){_; on G such that:

T T
Y Egrap Lyt g'(x)) < Jnf, {Z (e, gw(xt)) + Pe"(gw)} +AT,
t=1 t=1

where At > 0 is optimal and pen(g,) measures the complexity of
the network as follows:

w2
pen = 4||w||glo (1 +

Sparsity regret bound
Proof.

The proof is based on two facts:
® A PAC-Bayesian bound due to [Audibert, 2009]:

T

f u i IC(/), 7'[')
S Egpllg:z) < inf SEg,> lgz)+ 00 b
t=1

=1 pPEP(G)

where ¥y, g(x)) = £(y, g(x)) + 5 (£(y, (x) — £(y, &(x)))?
satisfies a mixability condition,

Sparsity regret bound
Proof.

The proof is based on two facts:
® A PAC-Bayesian bound due to [Audibert, 2009]:

T

f u i IC(/), 7'[')
S Egpllg:z) < inf SEg,> lgz)+ 00 b
t=1

=1 pPEP(G)

where ¥y, g(x)) = £(y, g(x)) + 5 (£(y, (x) — £(y, &(x)))?
satisfies a mixability condition,

® The choice of a power law 7 such that:

K) = 4lwlolog (1+ 1L)

7|/ wllo

where 7, is a translated version of 7.

Sparsity regret bound
XNOR-Nets case

Theorem

Considering inputs {(x¢,y:),t =1,..., T}, the decision space G,
and cross-entropy loss, there exists a sequence of distributions
(pt){_1 on G such that:

S Egplye, g/ () < inf {Z (yer gw(xe) + pen(gw)}mr,
t=1 t=1

wEWXNOR

where At > 0 is optimal and pen(gy) measure the complexity of
the network as follows:

[l

pen(gu) =4 Y. [wlolog (1+

we {Wreal 7\Mscale}

) + Pbin log 2
7|lwllo

Algorithm

Pseudo-code

Hyper-parameters : sparsity prior m € P(G). Parameter A > 0.
® Observe x; and draw j; = gg,(x1) where Wy ~ p1 := .
e Fort=1,..., T —1:

® Observe y; and draw $111 = ga,., (X¢41) Where:

VAVtJrl ~ exp {_)‘ZZ(YMgW(Xu))} d7T(W)

u=1

Challenging sampling problem

From the theoretical part, we want to sample from:

-
dpr(w) ~ exp {—/\Zﬁ(yt,gw(xt))} dm(w),

t=1

where prior m € P(WV) is a mixture of sparsity priors related with
CNNs architectures.

Problem dimension of W is huge (from 60k to 150M parameters)

Greedy (RJ)-MCMC algorithm

Initialization : wy ~ . Parameter A > 0.

For m=1,...M do
For k=1,...,N do

® Pick a layer £ € {1,...,L} at random,
® Propose W ~ p(-|wy),

® Accept wy1 = W with proba:

_ exp{—AY ez, Lye, gwlxt))} w(W)
exp{—AY ez, {(Ve, 8w, (xt))} m(wg)

— = = —

Greedy (RJ)-MCMC algorithm

conv layer

—co~=—

Example on a simple CNN

fc layer

— = v — <o

— = = —

Greedy (RJ)-MCMC algorithm

conv layer

—co~=—

Example on a simple CNN

fc layer

— = v — <o

— = = —

Greedy (RJ)-MCMC algorithm

Example on a simple CNN

= LT

conv layer

‘ —co~=— |

fc layer

‘ — = v — <o |

— = = —

Greedy (RJ)-MCMC algorithm

conv layer

—co~=—

Example on a simple CNN

fc layer

— = v — <o

— = = —

Greedy (RJ)-MCMC algorithm

conv layer

—co~=—

Example on a simple CNN

fc layer

— = v — <o

— = = —

Greedy (RJ)-MCMC algorithm

Example on a simple CNN

=LA77

conv layer

‘ —co~=— |

fc layer

‘ — = v — <o |

— = = —

Greedy (RJ)-MCMC algorithm

conv layer

—co~=—

Example on a simple CNN

fc layer

— = v — <o

— = = —

Greedy (RJ)-MCMC algorithm

conv layer

—co~=—

Example on a simple CNN

fc layer

— = v — <o

— = = —

Greedy (RJ)-MCMC algorithm

conv layer

—co~=—

Example on a simple CNN

fc layer

— = v — <o

— = = —

Greedy (RJ)-MCMC algorithm

conv layer

—co~=—

Example on a simple CNN

fc layer

— = v — <o

— = = —

Greedy (RJ)-MCMC algorithm

conv layer

—co~=—

Example on a simple CNN

fc layer

— = v — <o

Resistence to pruning on CIFAR-10

gradient (one epoch)
memc (one epoch)

~— memc (100 epochs)
gradient (100 epochs)

-

e CNN with 60,000 params,

e SGD with batch size 256 and no acceleration,
e MCMC with 200 iterations by epoch.

a

classification accuracy

Resistence to pruning on CIFAR-10

gradient (no acceleration)
—— MCMC (early stopping)

0.0 02 06 038

® CNN with 60,000 params,
® SGD with batch size 256 and no acceleration,
o MCMC with 200 iterations by epoch.

0.6

0.5

0.4

0.3

0.2

0.1

Resistence to pruning on CIFAR-10

stochastic gradient descent

400 600 800 1000

Resistence to pruning on CIFAR-10

mcmc algorithm

0 200 400 600 800 1000

classification accuracy

0.4

0.3

0.2

0.1

Lazy regime

gradient descent VS mcmc

——— gradient
—— mcmc

0.0 0.6 24

12 1.8
parameter updates (millions)

DA

QOutlines

© Extension to the power metrical task problem

Motivation

How to consider a new metrical task ?

Motivation

How to consider a new metrical task ?

® add a cost to the loss function = possible by
non-differentiable programming,

Motivation

How to consider a new metrical task ?

® add a cost to the loss function = possible by
non-differentiable programming,

® put it directly at the core of the online decision,

Motivation

How to consider a new metrical task ?

® add a cost to the loss function = possible by
non-differentiable programming,

® put it directly at the core of the online decision,

® |ink with metrical task systems and power management.

Motivation

How to consider a new metrical task ?

® add a cost to the loss function = possible by
non-differentiable programming,

® | put it directly at the core of the online decision |,

® |ink with metrical task systems and power management.

From mirror descent to Optimal transport

Mirror descent solves:

pey1 :=arg min {n(Vf(pe), p) + Bo(p, pt)} -
pEP(G)

From mirror descent to Optimal transport

Mirror descent solves:

pe+1 = arg min {n(VF(pt),p) + Bo(p, pt)} -
pEP(G)

® ®(x) = ||x||*> = no localization,

From mirror descent to Optimal transport

Mirror descent solves:

pe+1 = arg min {n(VF(pt),p) + Bo(p, pt)} -
pEP(G)

® ®(x) = ||x||*> = no localization,

* ®(p) = [plogp = sparsity,

From mirror descent to Optimal transport

Mirror descent solves:

pe+1 = arg min {n(VF(pt),p) + Bo(p, pt)} -
pEP(G)

® ®(x) = ||x||*> = no localization,

* ®(p) = [plogp = sparsity,

Joules?

Pt = P+l

From mirror descent to Optimal transport

Mirror descent solves:

pe+1 = arg min {n(VF(pt),p) + Bo(p, pe)} -
pEP(G)

® ®(x) = ||x||*> = no localization,

® ®(p) = [plogp = sparsity.

Joules?

Pt = Pt

Optimal transport

Consider the sequence (p;)/_; defined as:

, 5 Wal(p, pt)
pre1i=arg M {Engg(g:Zt) +)\t} ; (3)

where (g, z:) = U(g, zt) + 0¢(a, N).

Optimal transport

Consider the sequence (p;)/_; defined as:

, 5 Wal(p, pt)
pre1i=arg M {Engg(g:Zt) +)\t} ; (3)

where (g, z:) = U(g, zt) + 0¢(a, N).
Idea : replace Bo(p, m) by a Wy (p,), strictly convex perturbation
of the original optimal transport defined as:

Walpm)i= min { [Cleg)de.g) - amin) .
Ned(p,m) LJGxG

for some o >0 and cost C: G x G — R.

Optimal transport theorem

Theorem
Assume G is finite and let T,\ > 0. Let z1,...,zT deterministic
data. Then V' € P(G), (pt){_; based on (3) is such that :

T . , - f E i W Wal(p;m) A
Y " Egonon(g, zt) < m g~p E (g, 2t) \ +AT A,
t=1

where Aty >0 and N : P(G) — P(G) is defined as:

dM(p:)(g) = A(pt)Egrp, exp {—C(ga’g,)} :

Proof.

® new mixability condition 30, , : vV, 3M(7) : Vz,

Wa(p,) } 7

Eglwn(p)f(g/’ z) < Eg’wl_l(p) mpin {EngZ(g, z) + h\

where 7 = Ug,z)+ 0ra(g. &)

Proof.
® new mixability condition 30, , : vV, 3M(7) : Vz,

Wa(p,) } 7

Eglwn(p)f(g/’ z) < Eg’NI'I(p) mpin {EngZ(g, z) + h\

where = ((g,z) + alg, g’
® generalized PAC-Bayesian bound with B,

Proof.

® new mixability condition 30, , : vV, 3M(7) : Vz,

Wa(p,) } 7

Eglwn(p)f(g/’ z) < Eg’NI'I(p) mpin {EngZ(g, z) + h\

where = ((g,z) + alg, g’
® generalized PAC-Bayesian bound with B,
e applied for ®(-) = Wy(-,v).

Corollary

Corollary

Let m = 0gs the Dirac measure on the unique minimizer:

* -— arg min {Err; + nEnv;}.
g, ggeg{ nEnv;}

Consider minimization (3) with C(gi,gj) := C(Env;, Env;) we
have:

- g C(gagi*)
ZE gt~pt gtvzt) < m| Z gjzt + f +AT-
t=1 =1

Link with metrical task systems

Let X a finite metric space of size n.
At every timestept=1,..., T:

® the player receive a task function ¢; : X — R4,

® moove from state s;_; to s; and pay the movement cost
d(st—1,st) and the service cost ¢;(s;).

Link with metrical task systems

Let X a finite metric space of size n.
At every timestept=1,..., T:

® the player receive a task function ¢; : X — R4,

® moove from state s;_; to s; and pay the movement cost
d(st—1,st) and the service cost ¢;(s;).

= Many applications like power management,

Link with metrical task systems

Let X a finite metric space of size n.
At every timestept=1,..., T:
® the player receive a task function ¢; : X — R4,

® moove from state s;_; to s; and pay the movement cost
d(st—1,st) and the service cost ¢;(s;).

= Many applications like power management,
= Link with PEA,

Link with metrical task systems

Let X a finite metric space of size n.
At every timestept=1,..., T:
® the player receive a task function ¢; : X — R4,
® moove from state s;_; to s; and pay the movement cost
d(st—1,st) and the service cost ¢;(s;).

= Many applications like power management,
= Link with PEA,
= New competitive ratios instead of regret (OPT is mooving)

Link with metrical task systems

Let X a finite metric space of size n.
At every timestept=1,..., T:
® the player receive a task function ¢; : X — R4,
® moove from state s;_; to s; and pay the movement cost
d(st—1,st) and the service cost ¢;(s;).
= Many applications like power management,
= Link with PEA,

= New competitive ratios instead of regret (OPT is mooving)
= Optimal bound for stochastic algorithm is an open problem.

Concluding remarks

Summary
® a3 new optimizer based on theoretical framework,
® uses sparsity to get robustness to pruning,

® extend previous PAC-Bayesian approach to Bregman and
Optimal Transport.

Concluding remarks

Summary

® a3 new optimizer based on theoretical framework,
® uses sparsity to get robustness to pruning,

® extend previous PAC-Bayesian approach to Bregman and
Optimal Transport.

Open problems
® scale this new optimizer to imagenet,
® propose a power managed deep learning method at inference,

® introduce step by step the electricity constraints into the
online decision.

THANK YOU

AlPowerMeter software,
More materials on ACML workshop organized here,

Mathematical contents [1] for sparsity and [2] for Bregman
and Optimal Transport,

Website of the whole project.

https://github.com/GreenAI-Uppa/AIPowerMeter
https://greenai-uppa.github.io/power_efficient_deep_learning/
https://hal.archives-ouvertes.fr/hal-03262679/file/Sparsity_Regret_bounds_for_Xnornets.pdf
https://hal.archives-ouvertes.fr/hal-03262687
https://hal.archives-ouvertes.fr/hal-03262687
https://greenai-uppa.github.io/

THANK YOU

AlPowerMeter software,
More materials on ACML workshop organized here,

Mathematical contents [1] for sparsity and [2] for Bregman
and Optimal Transport,

Website of the whole project.

https://github.com/GreenAI-Uppa/AIPowerMeter
https://greenai-uppa.github.io/power_efficient_deep_learning/
https://hal.archives-ouvertes.fr/hal-03262679/file/Sparsity_Regret_bounds_for_Xnornets.pdf
https://hal.archives-ouvertes.fr/hal-03262687
https://hal.archives-ouvertes.fr/hal-03262687
https://greenai-uppa.github.io/

	Gentle start with gradient and mirror descent
	First application: how to learn sparse deep nets
	Extension to the power metrical task problem

