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Convexity and gradient

Let f: K C RP — R a convex function on a convex body.
If f is differentiable, Vx,y € K,

fFly) 2 £(x) + VE(x) - (y —x).
For y = argmink f(x), we have :

—Vf(x)-(y —x)>0.

The gradient flow %xt = —Vf(xt) is suitable for convex opt
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Gradient descent

Theorem
Under the previous assumption, the discretized version

Xer1 =Xt —NVIf(x), t=1,..., T,

satisfies:

I3 - ) < Z V(e

Proof.
The drop at time t satisfies:

2
I

Ixer1 — ¥II2 = [Ixe — yII> = —2n(xc — y)VF(xe) + 0? |V (xe)]]%.

O



Extension to non-euclidean settings
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Extension to non-euclidean settings

Gradient descent (1) can be written as:
2
: X — X
s =g {9y 4 2

= no localization and pure Euclidean setting
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Mirror descent

Mirror descent solves:

Xei1 1= arg)r(réilrg {nVFf(xt) - x + Bo(x, x¢)} (2)

Right dual form V®(xe11) = VO(x¢) — nVF(xe),
For o(x) = 5, (2) & (1),
Bo(x,xt) = [|x — XtH2V2¢(wt) by Taylor approximation,

Next: (2) with ®(p) = [ plogp, then Bo(p, ) = K(p, 7) and
we get for instance Bayesian updating.
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@ First application: how to learn sparse deep nets



Online learning
PAC Bayesian framework

Considering a deterministic set {z;,t =1,..., T}, a set of experts
G and a loss function, we want to build a sequence of
distributions (p;)/_; on G satisfying:

-
ZEngf g 2t) _g”éf {ZE g,zt) + pen(g )}+AT7

t=1 t=1

where
® pen(g) measures the complexity of the network,

® At > 0 is at least sublinear.
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® G:={gw: X —)Y,wec W}, where w are the weights of a
given CNNs architecture or set of architectures,



Supervised framework for CNNs

Framework

® z=(x,y), x € X input space of images, time series, network,
¢ the cross-entropy loss function 4(¥, y),

® G:={gw: X —)Y,wec W}, where w are the weights of a
given CNNs architecture or set of architectures,

o G:={gw: X — )Y, we W}is a set of XNOR-nets
architecture. For XNOR-nets convolutions are approximated
by bitwise operations:

Xk = (wfin @ sign o BNorm (Xk—l)) @ wicale,



Sparsity regret bound

Standard case

Theorem

Considering inputs {(x¢, yt),t = 1,..., T}, the decision space G,
and cross-entropy loss, there exists a sequence of distributions
(pt){_; on G such that:

T T
Y Egrap Lyt g'(x)) < Jnf, {Z (e, gw(xt)) + Pe"(gw)} +AT,
t=1 t=1

where At > 0 is optimal and pen(g,) measures the complexity of
the network as follows:

w2
pen = 4||w||glo (1 +



Sparsity regret bound
Proof.

The proof is based on two facts:
® A PAC-Bayesian bound due to [Audibert, 2009]:
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Sparsity regret bound
Proof.

The proof is based on two facts:
® A PAC-Bayesian bound due to [Audibert, 2009]:

T

f u i IC(/), 7'[')
S Egpllg:z) < inf SEg,> lgz)+ 00 b
t=1

=1 pPEP(G)

where ¥y, g(x)) = £(y, g(x)) + 5 (£(y, (x) — £(y, &(x)))?
satisfies a mixability condition,

® The choice of a power law 7 such that:

K ) = 4lwlolog (1+ 1L )

7|/ wllo

where 7, is a translated version of 7.



Sparsity regret bound
XNOR-Nets case

Theorem

Considering inputs {(x¢,y:),t =1,..., T}, the decision space G,
and cross-entropy loss, there exists a sequence of distributions
(pt){_1 on G such that:

S Egplye, g/ () < inf {Z (yer gw(xe) + pen(gw)}mr,
t=1 t=1

wEWXNOR

where At > 0 is optimal and pen(gy) measure the complexity of
the network as follows:

[l

pen(gu) =4 Y. [wlolog (1+

we {Wreal 7\Mscale}

) + Pbin log 2
7|lwllo



Algorithm

Pseudo-code

Hyper-parameters : sparsity prior m € P(G). Parameter A > 0.
® Observe x; and draw j; = gg,(x1) where Wy ~ p1 := .
e Fort=1,..., T —1:

® Observe y; and draw $111 = ga,., (X¢41) Where:

VAVtJrl ~ exp {_)‘ZZ(YMgW(Xu))} d7T(W)

u=1



Challenging sampling problem

From the theoretical part, we want to sample from:

-
dpr(w) ~ exp {—/\Zﬁ(yt,gw(xt))} dm(w),

t=1

where prior m € P(WV) is a mixture of sparsity priors related with
CNNs architectures.

Problem dimension of W is huge (from 60k to 150M parameters)



Greedy (RJ)-MCMC algorithm

Initialization : wy ~ . Parameter A > 0.

For m=1,...M do
For k=1,...,N do

® Pick a layer £ € {1,...,L} at random,
® Propose W ~ p(-|wy),

® Accept wy1 = W with proba:

_ exp{—AY ez, Lye, gwlxt))} w(W)
exp{—AY ez, {(Ve, 8w, (xt))} m(wg)
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Resistence to pruning on CIFAR-10

gradient (one epoch)
memc (one epoch)

~— memc (100 epochs)
gradient (100 epochs)

-

e CNN with 60,000 params,

e SGD with batch size 256 and no acceleration,
e MCMC with 200 iterations by epoch.



a

classification accuracy

Resistence to pruning on CIFAR-10

gradient (no acceleration)
—— MCMC (early stopping)

0.0 02 06 038

® CNN with 60,000 params,
® SGD with batch size 256 and no acceleration,
o MCMC with 200 iterations by epoch.
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Resistence to pruning on CIFAR-10

mcmc algorithm

0 200 400 600 800 1000




classification accuracy
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Lazy regime

gradient descent VS mcmc

——— gradient
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Motivation

How to consider a new metrical task ?

® add a cost to the loss function = possible by
non-differentiable programming,

® | put it directly at the core of the online decision |,

® |ink with metrical task systems and power management.
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From mirror descent to Optimal transport

Mirror descent solves:

pe+1 = arg min {n(VF(pt),p) + Bo(p, pe)} -
pEP(G)

® ®(x) = ||x||*> = no localization,

® ®(p) = [ plogp = sparsity.

Joules?

Pt = Pt
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Optimal transport

Consider the sequence (p;)/_; defined as:

, 5 Wal(p, pt)
pre1i=arg M {Engg(g:Zt) + )\t} ; (3)

where (g, z:) = U(g, zt) + 0¢(a, N).
Idea : replace Bo(p, m) by a Wy (p, ), strictly convex perturbation
of the original optimal transport defined as:

Walpm)i= min { [ Cleg)de.g) - amin) .
Ned(p,m) LJGxG

for some o >0 and cost C: G x G — R.



Optimal transport theorem

Theorem
Assume G is finite and let T,\ > 0. Let z1,...,zT deterministic
data. Then V' € P(G), (pt){_; based on (3) is such that :

T . , - f E i W Wal(p;m) A
Y " Egonon(g, zt) < m g~p E (g, 2t) \ +AT A,
t=1

where Aty >0 and N : P(G) — P(G) is defined as:

dM(p:)(g) = A(pt)Egrp, exp {—C(ga’g,)} :



Proof.

® new mixability condition 30, , : vV, 3M(7) : Vz,
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Proof.

® new mixability condition 30, , : vV, 3M(7) : Vz,

Wa(p, ) } 7

Eglwn(p)f(g/’ z) < Eg’NI'I(p) mpin {EngZ(g, z) + h\

where = ((g,z) + alg, g’
® generalized PAC-Bayesian bound with B,
e applied for ®(-) = Wy(-,v).



Corollary

Corollary

Let m = 0gs the Dirac measure on the unique minimizer:

* -— arg min {Err; + nEnv;}.
g, ggeg{ nEnv;}

Consider minimization (3) with C(gi,gj) := C(Env;, Env;) we
have:

- g C(gagi*)
ZE gt~pt gtvzt) < m| Z gjzt + f +AT-
t=1 =1
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Link with metrical task systems

Let X a finite metric space of size n.
At every timestept=1,..., T:
® the player receive a task function ¢; : X — R4,
® moove from state s;_; to s; and pay the movement cost
d(st—1,st) and the service cost ¢;(s;).
= Many applications like power management,
= Link with PEA,

= New competitive ratios instead of regret (OPT is mooving)
= Optimal bound for stochastic algorithm is an open problem.
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Concluding remarks

Summary

® a3 new optimizer based on theoretical framework,
® uses sparsity to get robustness to pruning,

® extend previous PAC-Bayesian approach to Bregman and
Optimal Transport.

Open problems
® scale this new optimizer to imagenet,
® propose a power managed deep learning method at inference,

® introduce step by step the electricity constraints into the
online decision.
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